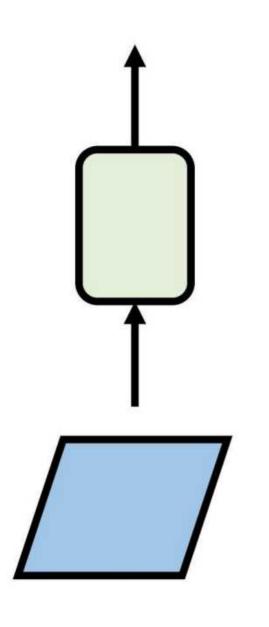
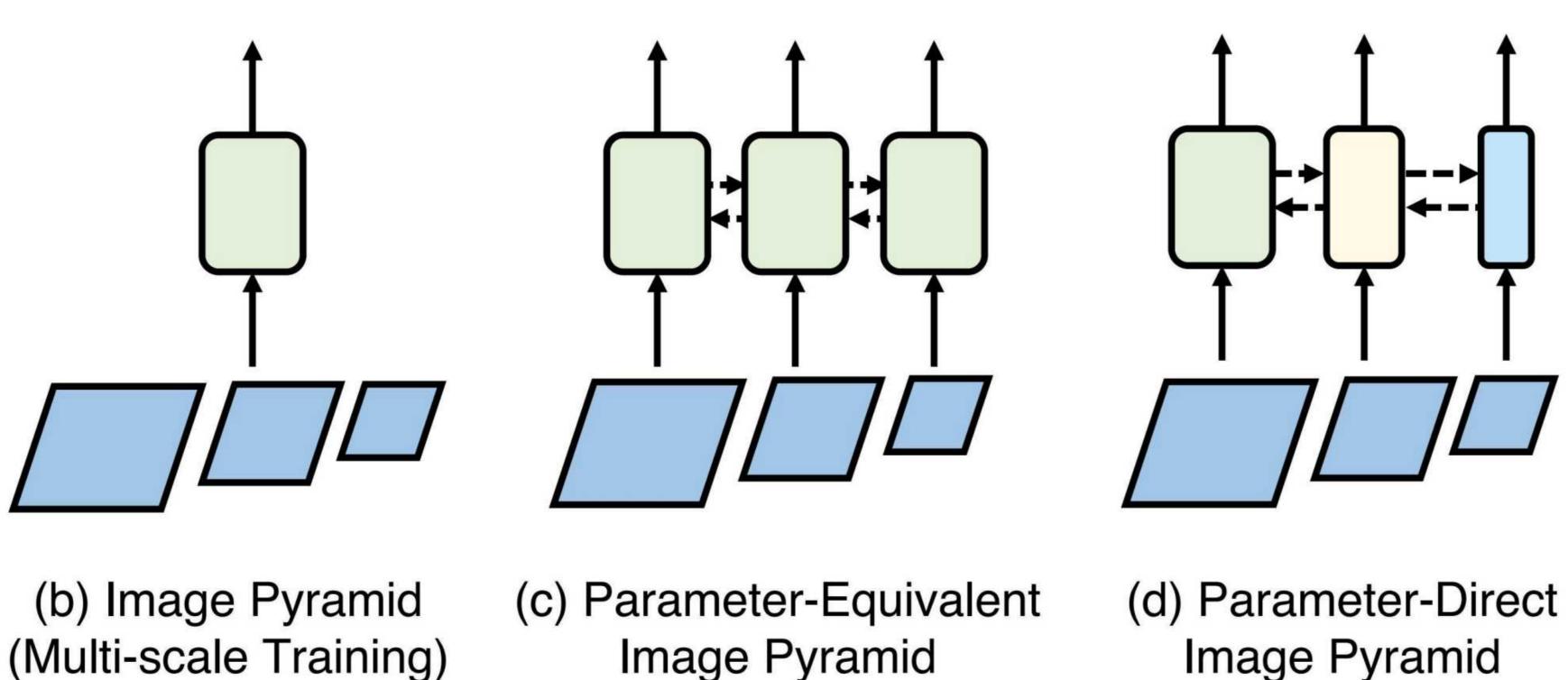


上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

Parameter-Inverted Image Pyramid Networks

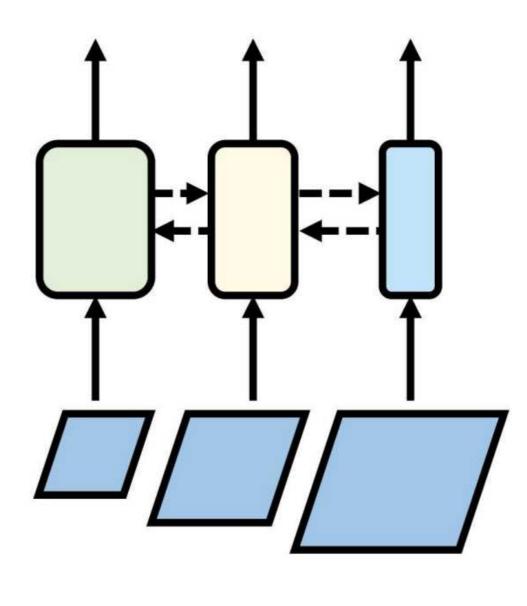
Xizhou Zhu^{2,1*}, Xue Yang^{1*}, Zhaokai Wang^{3,1*}, Hao Li^{4,1} Wenhan Dou^{2,5}, Junqi Ge^{2,5}, Lewei Lu⁵, Yu Qiao¹, Jifeng Dai^{2,1}


- ¹OpenGVLab, Shanghai AI Laboratory
 - ²Tsinghua University
 - ³Shanghai Jiao Tong University
- ⁴The Chinese University of Hong Kong
 - ⁵SenseTime Research



NeurIPS 2024 Spotlight

Motivation



(a) Plain

• Traditional image pyramids processing high-res images: significant computational overhead • Parameter-inverted Design: large models for low-res images to extract rich context; small models for high-res images to focus on details.

• Cross-branch interactions improves efficiency and avoids redundant modeling.

Different image pyramid network designs

(e) Parameter-Inverted Image Pyramid

Large Model


Medium Model

Small Model

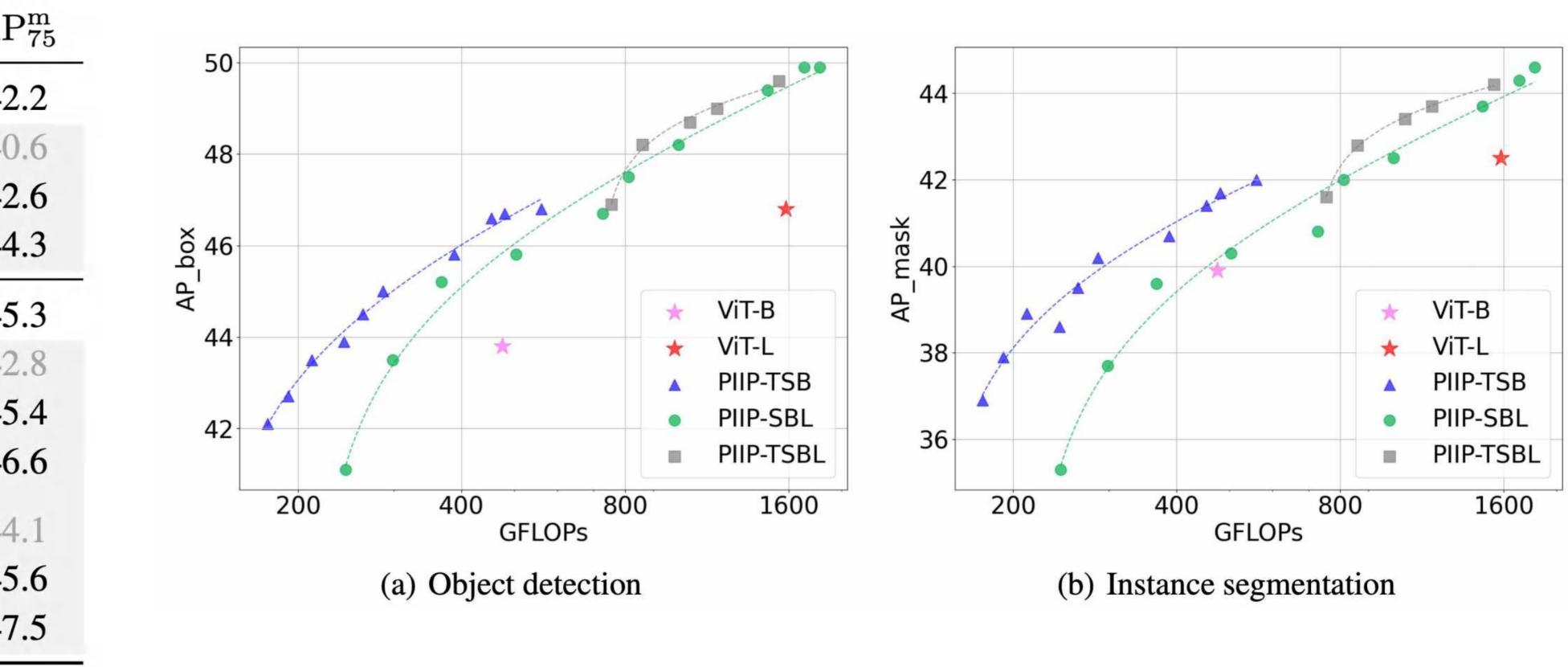
Interaction

Method

- inverted design.

• Parameter-Inverted Image Pyramid Networks (PIIP) • Multi-resolution Branches: Different-sized model for different resolutions with parameter-

• Cross-branch Interactions: Added every few layers to integrate features of different scales. • **Branch Merging:** combines outputs of all branches to form the final output.


Overall architecture

Experiments - Detection

Madal	Decelertiere	#Demos	HELOD-		Mas	k R-CNN	$1 \times sch$	edule	
Model	Resolution	#Param	#FLOPs	AP^{b}	$\mathrm{AP_{50}^b}$	$\mathrm{AP^b_{75}}$	AP^{m}	$^{\rm m}$ AP $_{50}^{\rm m}$	
ViTDet-B [23]	1024	90M	463G	43.8	67.6	47.7	39.9	63.6	42.2
	1120/896/448	146M	243G	43.9	65.7	47.5	38.6	61.8	40.0
PIIP-TSB (ours)	1568/896/448	147M	287G	45.0	67.0	48.7	40.2	63.8	42.6
	1568/1120/672	149M	<u>453G</u>	46.6	68.4	51.1	41.4	65.2	44.3
ViTDet-L [23]	1024	308M	1542G	46.8	70.8	51.4	42.5	67.3	45.3
	1120/672/448	493M	727G	46.7	69.0	50.6	40.8	65.2	42.8
PIIP-SBL (ours)	1344/896/448	495M	1002G	48.2	71.0	52.8	42.5	67.3	45.4
	1568/896/672	497M	<u>1464G</u>	49.4	71.9	53.9	43.7	68.4	46.6
	1344/896/672/448	506M	755G	<u>46.9</u>	69.9	50.6	41.6	65.9	44.1
PIIP-TSBL (ours)	1568/1120/672/448	507M	861G	48.2	70.5	52.7	42.8	66.9	45.0
	1792/1568/1120/448	512M	<u>1535G</u>	49.6	72.4	54.2	44.2	69.2	47.5

Comparison with baseline on COCO val2017

Experiments - Detection

Method	$\left \begin{array}{ccc}AP^b&AP^b_{50}&AP^b_{75}&AP^m&AP^m_{50}&AP^m_{75}\end{array}\right.$		AP_{75}^{m}	Method	AP ^b	$\mathrm{AP_{50}^b}$	$\mathrm{AP^b_{75}}$	AP^{m}	AP_{50}^{m}	AP_{75}^{m}			
		Mas	k R-CN	N $1 \times \text{sch}$	nedule			1	Casca	de R-CN	IN $1 \times s$	chedule	
PVTv2-B5 [51]	47.4	68.6	51.9	42.5	65.7	46.0	Swin-L [30]	51.8	71.0	56.2	44.9	68.4	48.9
ViT-B [24]	42.9	65.7	46.8	39.4	62.6	42.0	ConvNeXt-L [31]	53.5	72.8	58.3	46.4	70.2	50.2
ViTDet-B [23]	43.2	65.8	46.9	39.2	62.7	41.4	PIIP-SBL (ours)	53.6	73.3	57.9	46.3	70.3	50.0
Swin-B [30]	46.9	-	-	42.3	-	-	-	(Cascade	R-CNN	$3 \times + M$	S schedu	le
ViT-Adapter-B [7]	47.0	68.2	51.4	41.8	65.1	44.9	Swin-B [30]	51.9	70.9	57.0	_	_	-
PIIP-TSB (ours)	47.9	70.2	52.5	42.6	67.2	45.5	Shuffle-B [22]	52.2	71.3	57.0	_	-	_
ViT-L [24]	45.7	68.9	49.4	41.5	65.6	44.6	ViT-B [24]	50.1	69.3	54.3	-	-	-
ViTDet-L [23]	46.2	69.2	50.3	41.4	65.8	44.1	ViT-Adapter-B [7]	52.1	70.6	56.5	-	-	-
ViT-Adapter-L [7]	48.7	70.1	53.2	43.3	67.0	46.9	PIIP-TSB (ours)	53.1	72.3	57.4	46.5	70.1	51.1
PIIP-SBL (ours)	49.9	72.8	54.7	44.6	69.3	47.9	Swin-L [30]	53.9	72.4	58.8	46.7	70.1	50.8
		D	INO + M	IS sched	ule		RepLKNet-31L [12]	53.9	72.5	58.6	46.5	70.0	50.6
PIIP-SBL- $3 \times (ours)$	57.9	76.9	63.3	-	-	-	ConvNeXt-L [31]	54.8	73.8	59.8	47.6	71.3	51.7
PIIP-H6B-1 \times (ours)	60.0	79.0	65.4	-	-	-	PIIP-SBL (ours)	54.5	73.8	59.1	47.7	71.6	52.1

Comparison with SoTA

Experiments - Segmentation & Classification

Table 5: Comparison with baseline on ADE20K using UperNet.

Metho

ViT-B PIIP-TSB

ViT-L

PIIP-SBL

Table 7: Image indicates FLOPs

Mod

DeiT-B PIIP-TSE

ViT-L ViT-L [40] (PIIP-SBL PIIP-SBL

Table 3: Experiments on the large-scale vision foundation model InternViT-6B.

Mo

InternVi

PIIP-LH6

Table 6: Semantic segmentation performance on ADE20K using UperNet.

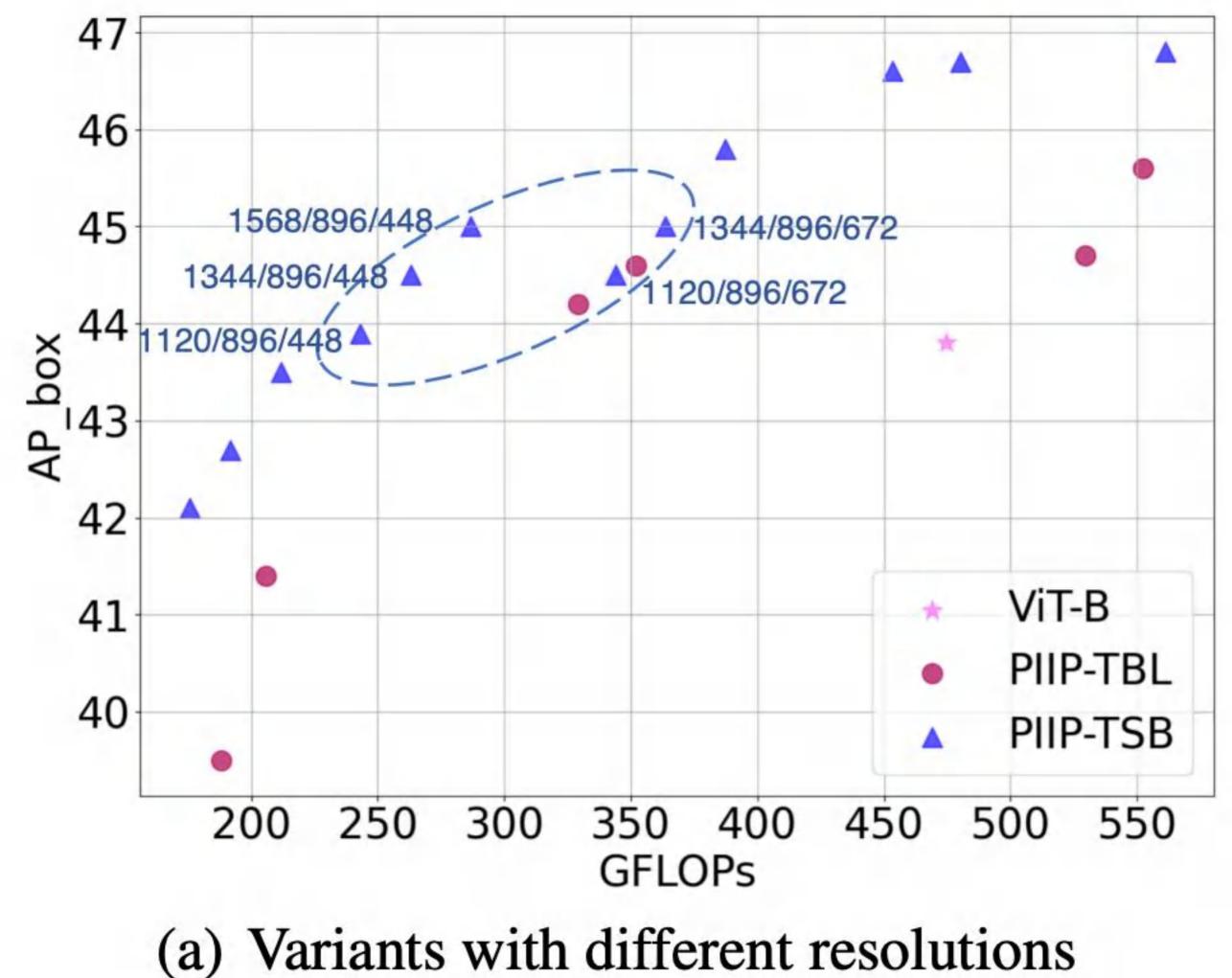
od	Crop Size	#FLOPS	mIoU
В	640^{2}	159G	51.0
(ours)	896/ <u>448²</u> /336	118G	51.6
L	640^{2}	545G	53.6
(ours)	1120/ <u>448²</u> /336	456G	54.3

- 1	~ ~				
d	Crop Size	#FLOPS	mIoU	Method	Crop Size
	640^{2}	159G	51.0		
ours)	896/ <u>448²</u> /336	118G	51.6	Swin-B [28]	512^{2}
	640 ²	545G	53.6	ConvNeXt-B [29]	512^{2}
ours)	1120/448 ² /336	456G	54.3	RepLKNet-31B [11]	512^{2}
				SLaK-B [27]	512^{2}
classi	fication perform	ance on In	ageNet. Under	InternImage-B [46]	512^{2}
	etrics on par with		0	PIIP-TSB (ours)	896/ <u>448²</u> /336
del	Resolution	n #FLOP	s Top-1 Acc	Swin-L [28]	<u>640²</u>
				RepLKNet-31L [11]	
B [42]	224	17.2G	81.8	Kepekiel-Sie [11]	640^{2}
-				ConvNeXt-L [29]	$\frac{640^2}{640^2}$
B [42] B (ours					
B (ours	s) 368/192/12 224	28 <u>17.4G</u>	82.1 84.0	ConvNeXt-L [29] ConvNeXt-XL [29]	$\frac{640^2}{640^2}$
B (ours	a) 368/192/12 224 224 224	28 <u>17.4G</u> 61.6G 61.6G	82.1 84.0 85.2	ConvNeXt-L [29]	<u>640²</u>

odel	#Param	M	ask R-CNN 1× so	UperNet 160k				
louei	π1 a1 a111	#FLOPs	Resolution	AP^{b}	AP^{m}	Crop Size	#FLOPs	mIoU
/iT-6B [<mark>8</mark>]	5919M	24418G	1024	53.8	48.1	512^{2}	6105G	58.36
	7269M	5643G	1280/1024/256	53.5	47.5	640/ <u>512²</u> /192	1903G	57.82
H6B (ours)	7271M	10368G	1280/1024/512	54.4	47.8	640/ <u>512²</u> /256	2592G	58.42
	7273M	13911G	1280/1024/640	55.7	49.0	640/ <u>512²</u> /384	4560G	59.65

Experiments - Ablation

Table 9: Ablation on image pyramid and parameter-inverted design. 'PI', 'IP' and 'Inter.' represent parameter-inverted, image pyramid and interactions. 'MS' means multi-scale training, following [10].


Figure	Branches	PI	IP	Inter.	Resolution	#Param	#FLOP
Fig. 1(a)	B				1024	90M	463G
Fig. 1(b)	В		\checkmark		MS	90M	463G
-	BBB		\checkmark		896/448/224	262M	369G
-	BBB		\checkmark		896/672/224	263M	457G
Fig. 1(c)	BBB		\checkmark	\checkmark	896/448/224	341M	466G
-	TSB			\checkmark	896/896/896	148M	468G
Fig. 1(d)	TSB		\checkmark	\checkmark	448/672/896	147M	452G
Fig. 1(e)	TSB	~	\checkmark	\checkmark	1568/1120/672	149M	453G
Fig. 1(a)	L				1024	308M	1542G
Fig. 1(c)	LLL		\checkmark	\checkmark	896/448/224	1053M	1458G
-	SBL			\checkmark	848/848/848	495M	1539G
Fig. 1(e)	SBL	~	~	\checkmark	1568/896/672	497M	1464G

Mask R-CNN 1× schedule Ps AP_{50}^{b} AP_{75}^{b} AP^{m} AP_{50}^{m} AP_{75}^{m} AP^{b} 47.7 39.9 67.6 63.6 43.8 42.2 49.1 65.8 69.2 41.0 44.8 43.9 46.6 61.5 65.8 37.9 39.6 43.3 47.3 66.3 62.2 38.2 39.7 43.8 66.5 48.2 38.7 62.6 44.5 40.6 66.4 48.3 62.7 39.0 41.4 44.6 36.5 38.0 64.2 45.6 59.5 42.6 51.1 41.4 65.2 68.4 44.3 46.6 70.8 42.5 45.3 51.4 67.3 46.8 69.7 51.2 40.8 65.3 43.3 46.9 69.4 51.0 41.1 65.4 43.7 47.2 71.9 53.9 43.7 68.4 46.6 49.4

Experiments - Ablation

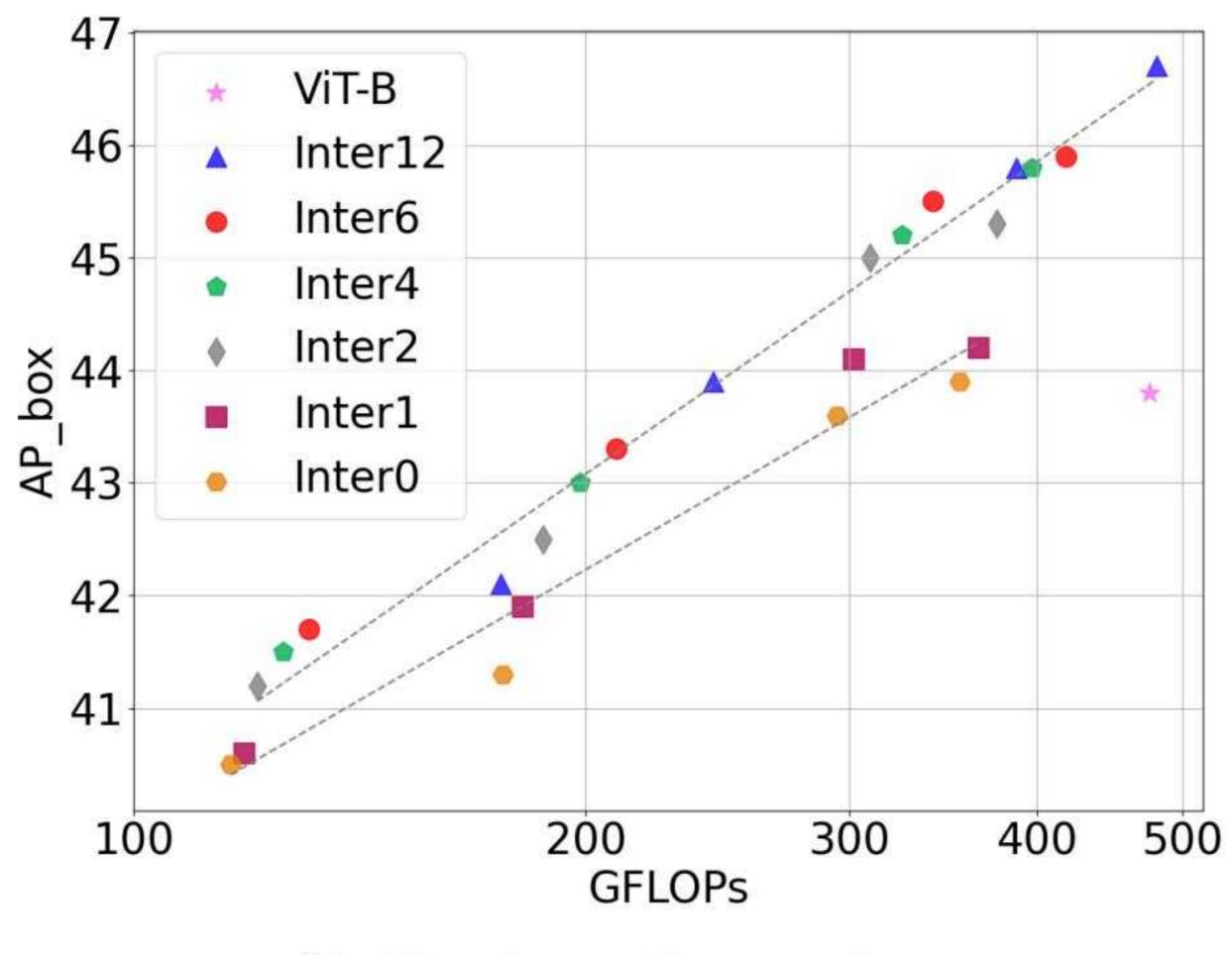
	iments of initiali I weights on COC /1120/672.	Table8:AblaMerging on COuse PIIP-TSB 15	CO va	al2017.		
ViT-S	ViT-B / ViT-L	AP ^b	AP^{m}	Out Branch	AP ^b	AP ^m
Aug Dag [12]	AngDag [12]	10 2	12.6	В	43.1	37.0
AugReg [43]	AugReg [43]	48.3	42.6	S	44.7	39.1
DeiT III [46]	Uni-Perceiver [66]	48.8	42.9	Т	45.6	40.6
DeiT III [46]	MAE [18]	49.1	43.0	B+S	45.4	39.8
DeiT III [46]	DeiT III [46]	50.0	44.4	B+T	46.3	41.1
DeiT III [46]	DINOv2 [38]	51.0	44.7	S+T	46.2	40.9
DeiT III [46]	BEiTv2 [39]	51.8	45.4	B+S+T	46.6	41.4

Model

ViTDet-L ViTDet-L **PIIP-TSBL**

Table 10: Baseline with higher resolution.

ĺ	Resolution	#Param	#FLOPs	A
ľ	1024	308M	1542G	4
	1792	308M	6458G	4
	1792/1568/1120/448	512M	1535G	4



We

 AP^{b}

- 46.8
- 48.3
- 49.6

Experiments - Ablation

(b) Number of interactions

#Tratana ation		Regula	ar Atten	tion		Deformable Attention					
#Interaction	#FLOPs	AP^{b}	AP_1^b	AP_m^b	AP_s^b	#FLOPs	AP^{b}	$\operatorname{AP_1^b}$	AP_m^b	AP_s^b	
0	176G	41.3	59.0	44.6	22.5	176G	41.3	59.0	44.6	22.5	
1	211G	41.1	59.1	44.9	22.6	182G	41.9	59.8	45.5	22.4	
2	245G	41.7	59.5	45.2	22.7	187G	42.5	60.5	46.4	23.1	
4	315G	41.6	59.2	45.3	22.8	198G	43.0	61.0	47.3	23.3	
6	384G	42.1	59.7	45.8	23.2	210G	43.3	61.8	46.9	23.6	
12	592G	42.0	60.0	45.9	23.1	243G	43.9	62.4	47.9	24.4	

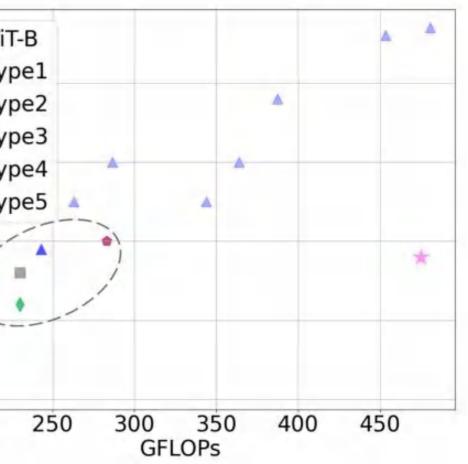

Туре						46 * ViT-B • Type1 • Type2 = Type3
#FLOPs	210G	230G	230G	243G	283G	45 A Type4 oq 44 Type5
AP^{b}	43.5	43.2	43.6	43.9	44.0	43
AP^{m}	38.7	38.3	38.6	38.6	38.7	42
						200 250

Table 11: Ablation on attention type and number of interactions with PIIP-T

Table 12: Ablation on interaction directions with PIIP-TSB under resolution 1120/896/448.

ΓSB	1120/896/448.

Conclusion

- Introduces the Parameter-Inverted Image Pyramid Networks (PIIP) to address the computational challenges of traditional image pyramids.
- PIIP balances computational efficiency and performance with the parameter-inverted design and feature interaction mechanism.
- Experiments on detection, segmentation and classification tasks demonstrate that PIIP outperforms traditional single-branch networks while reducing computational costs.
- Provides an efficient and effective framework of multi-scale feature integration for future research.

Thanks for Listening !

Code Link: https://github.com/OpenGVLab/PIIP

Contact: wangzhaokai@sjtu.edu.cn

